On continuous curves which are homogeneous except for a finite number of points
نویسندگان
چکیده
منابع مشابه
Which elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملThe fluctuations in the number of points on a family of curves over a finite field
L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction...
متن کاملImproved Upper Bounds for the Number of Points on Curves over Finite Fields
We give new arguments that improve the known upper bounds on the maximal number Nq(g) of rational points of a curve of genus g over a finite field Fq, for a number of pairs (q, g). Given a pair (q, g) and an integer N , we determine the possible zeta functions of genus-g curves over Fq with N points, and then deduce properties of the curves from their zeta functions. In many cases we can show t...
متن کاملIntegral points on congruent number curves
We provide a precise description of the integer points on elliptic curves of the shape y2 = x3 − N2x, where N = 2apb for prime p. By way of example, if p ≡ ±3 (mod 8) and p > 29, we show that all such points necessarily have y = 0. Our proofs rely upon lower bounds for linear forms in logarithms, a variety of old and new results on quartic and other Diophantine equations, and a large amount of ...
متن کاملCounting Points on Curves over Finite Fields
Stanford University) Abstract: A curve is a one dimensional space cut out by polynomial equations, such as y2=x3+x. In particular, one can consider curves over finite fields, which means the polynomial equations should have coefficients in some finite field and that points on the curve are given by values of the variables (x and y in the example) in the finite field that satisfy the given polyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1929
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-13-1-151-177